Median of Two Sorted Arrays

There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).


Note:
Please head over to this MIT handout for a much better solution, although their solution does not deal with some special cases, which is easy to fix. Please consult Sophie’s solution which fixes these special cases easily. Although my solution below works, it is too complicated.

Online Judge
This problem is available at Online Judge. Head over there and it will judge your solution. Currently only able to compile C++ code. If you are using other languages, you can still verify your solution by looking at the judge’s test cases and its expected output.

Solution:
If you search this problem on Google, you will find tons of hits. However, most of them deal with the special case where m == n, and even so their code are filled with bugs. The CLRS book has this problem as exercise in section 9.3-8, however it also assumes the case where m == n. The only reliable solution I found on the web which deals with the generic case also seemed incorrect, as their definition of the median is the single middle element (although their approach of using binary search is pretty neat). According to the definition of the median, if (m + n) is even, then the median should be the mean of the two middle numbers.

If you read my previous post: Find the k-th Smallest Element in the Union of Two Sorted Arrays, you know that this problem is somewhat similar. In fact, the problem of finding the median of two sorted arrays when (m + n) is odd can be thought of solving the special case where k=(m+n)/2. Although we can still apply the finding k-th smallest algorithm twice to find the two middle numbers when (m + n) is even, it is no more a desirable solution due to inefficiency.

You might ask: Why not adapt the previous solution to this problem? After all, the previous algorithm solves a more general case. Well, I’ve tried that and I didn’t consider the previous solution is easily adaptable to this problem. The main reason is because when (m + n) is even, the two middle elements might be located in the same array. This complicates the algorithm and many special cases have to be dealt in a case by case basis.

Similar to finding the k-th smallest, the divide and conquer method is a natural approach to this problem. First, we choose Ai and Bj (the middle elements of A and B) where i and j are defined as m/2 and n/2. We made an observation that if Ai <= Bj, then the median must be somewhere between Ai and Bj (inclusive). Therefore, we could dispose a total of i elements from left of Ai and a total of n-j-1 elements to the right of Bj. Please take extra caution not to dispose Ai or Bj, as we might need two middle values to calculate the median (it might also be possible that the two middle values are both in the same array). The case where Ai > Bj is similar.

Two sorted arrays A and B. i is chosen as m/2 and j is chosen as n/2. Ai and Bj are middle elements of A and B. If Ai < Bj, then the median must be between Ai and Bj (inclusive). Similarly with the opposite.

The main idea illustrated above is mostly right, however there is one more important invariant we have to maintain. It is entirely possible that the number of elements being disposed from each array is different. Look at the example above: If Ai <= Bj, two elements to the left of Ai and three elements to the right of Bj are being disposed. Notice that this is no longer a valid sub-problem, as both sub-array’s median is no longer the original median.

Therefore, an important invariant we have to maintain is:

The number of elements being disposed from each array must be the same.

This could be easily achieved by choosing the number of elements to dispose from each array to be (Warning: The below condition fails to handle an edge case, for more details see the EDIT section below):

k = min(i, n-j-1) when Ai <= Bj.                   <--- 1(a)
k = min(m-i-1, j) when Ai > Bj.                    <--- 1(b)

Figuring out how to subdivide the problem is actually the easy part. The hard part is figuring out the base case. (ie, when should we stop subdividing?)

It is obvious that when m=1 or n=1, you must treat it as a special base case, or else it would end up in an infinite loop. The hard part is reasoning why m=2 or n=2 requires special case handling as well. (Hint: The two middle elements might be in the same array.)

Finally, implementing the above idea turns out to be an extremely tricky coding exercise. Before looking at the solution below, try to challenge yourself by coding the algorithm.

If you have a more elegant code to this problem, I would love to hear from you!

EDIT:
Thanks to Algorist for being the first person who points out a bug. (For more details, read his comment). The bug is caused by some edge cases that are not handled in the base case.

Shortly after I fixed that bug, I discovered another edge case myself which my previous code failed to handle.

An example of one of the edge cases is:

A = { 1, 2, 4, 8, 9, 10 }
B = { 3, 5, 6, 7 }

The above conditions ( 1(a), 1(b) ) fails to handle the above edge case, which returns 5 as the median while the correct answer should be 5.5.

The reason is because the number 5 is discarded in the first iteration, while it should be considered in the final evaluation step of the median. To resolve this edge case, we have to be careful not to discard the neighbor element when its size is even. Here are the corrected conditions ( 2(a), 2(b), 2(c), 2(d) ) for k which resolves this edge case.

k = min(i-1, n-j-1) when Ai <= Bj and m is even.   <--- 2(a)
k = min(i, n-j-1)   when Ai <= Bj and m is odd.    <--- 2(b)
k = min(m-i-1, j-1) when Ai > Bj  and n is even.   <--- 2(c)
k = min(m-i-1, j)   when Ai > Bj  and n is odd.    <--- 2(d)

Below is the bug-free code after going through a lengthy rigorous testing of all possible edge cases. (Not for the faint of heart!)

EDIT2:
A reader buried.shopno had managed to code the solution more elegantly! I especially like how medianOfThree and medianOfFour were implemented. For more details, read his comment below. Great job!

Further thoughts:
A reader nimin98 suggested that the base case can be handled by simply doing a direct merge. In other words, we have to merge the short array (containing either one or two elements) with the longer array (pick the four elements near the middle. Deciding which four is another tricky business because of multiple special cases). nimin98’s code has few bugs in the handling of base case.

In general, The above approaches (including mine) to handle the base case are not recommended due to tricky implementation. How about Binary Search? We can use binary search to find the correct position to insert elements from the shorter array into the longer array, thus completing the merge (You don’t have to *actually* insert it, recording its index should be suffice).

VN:F [1.9.22_1171]
Rating: 4.6/5 (53 votes cast)
Median of Two Sorted Arrays, 4.6 out of 5 based on 53 ratings

139 thoughts on “Median of Two Sorted Arrays

  1. Sachin

    something is missing in code above, in the snippet below:
    int i = m/2, j = n/2;
    if (A[i] 0);
    return findMedian(A+k, m-k, B, n-k);
    } else {
    int k = min(m-i-1, j);
    assert(k > 0);
    return findMedian(A, m-k, B+k, n-k);
    }

    the condition if (A[i] 0); is incomplete and also, ‘k’ is not defined in the call return findMedian(A+k, m-k, B, n-k);

    VA:F [1.9.22_1171]
    0
  2. Sachin

    also, else if statement in
    // Prerequisite: a must be less than or equal to b
    double medianOfThree(int a, int b, int val) {
    assert(a <= b);
    if (val <= a)
    return a;
    else if (val b */
    return b;
    }

    is incomplete

    VA:F [1.9.22_1171]
    0
  3. Sachin

    In
    int i = m/2, j = n/2;
    if (A[i] 0);
    return findMedian(A+k, m-k, B, n-k);

    k is undefined and if statement is incomplete

    VA:F [1.9.22_1171]
    0
  4. David

    Very cool analysis! It is actually disappointing to see so many buggy solutions online, while this is a question I often see being asked in an interview.

    Good job.

    VA:F [1.9.22_1171]
    0
  5. SK

    Two more question to add to your queue :

    1) Given two sorted positive integer arrays A[n] and B[n] , we define a set S = {(a,b) | a \in A and b \in B}. The value of such a pair is defined as Val(a,b) = a + b. Now we want to get the n pairs from S with largest values in O(n) time.

    2) Consider there is an array with duplicates and you are given two numbers as input and u have to return the minimum distance between the two in the array with minimum complexity.

    VA:F [1.9.22_1171]
    0
    1. theGhost

      1.
      At any point, starting from right, either Val(A[aIdx-1],B[bIdx]) or Val(A[aIdx], B[bIdx-1]), would foorm the largest val pair; offcourse after A[aIdx], B[bIdx], has been taken up.

      VN:F [1.9.22_1171]
      0
  6. Algorist

    There are some bugs in this the program posted…….

    For e.g. It doesn’t handles base case properly.

    Arr1 = 2 elements (p, q)
    Arr2 = even no. of elements(1,9,11,16,24,28,32,46)

    Now p & q may occur anywhere in the list…..
    For e.g.
    p,q,1,9,11,16,24,28,32,46
    1,9,p,q,11,16,24,28,32,46
    1,9,p,11,q,16,24,28,32,46
    1,9,11,p,q,16,24,28,32,46
    1,9,11,p,16,q,24,28,32,46
    1,9,11,16,p,q,24,28,32,46
    1,9,11,16,p,24,q,28,32,46
    1,9,11,16,24,p,q,28,32,46
    1,9,11,16,24,p,28,q,32,46
    1,9,11,16,24,28,p,q,32,46
    1,9,11,16,24,28,32,46,p,q

    Please check the logic that you have implemented works for this case. I have placed p & q knowingly around 11,16,24,28 in final array..

    VA:F [1.9.22_1171]
    0
    1. 1337c0d3r Post author

      You are absolutely correct. Congrats to Algorist for being the first reader who found the bug! I will give credit to you and correct my code in my post shortly. Thanks!

      VN:F [1.9.22_1171]
      0
  7. Algorist

    Also, one thing that i haven’t understood is

    k = min(i, n-j-1) when Ai Bj.

    May be very tired that’s why not able to get the logic behind.. Please if anybody could explain this..

    VA:F [1.9.22_1171]
    0
    1. 1337c0d3r Post author

      I would never delete my reader’s comments. The reason you are not seeing your comments appearing immediately is because it requires my manual approval. I will remove this restriction now, as the spam filter is working pretty good up to this point. Thanks for yoru patience.

      VN:F [1.9.22_1171]
      0
  8. vardhan

    hey buddy,
    I have few questions to send out to you. is that fine to post them directly here or mail them to you. If I want to mail you, can you provide me your mail id?
    thanks!

    VA:F [1.9.22_1171]
    0
  9. nimin98

    How about this solution; basically, for the boundary case, simply merge the two tiny arrays, any special cases will be handled automatically.

    int medianTwoArray(int *arrL, int *arrR, int sizeL, int sizeR) {
    if (sizeL <= 2 || sizeR <= 2) {
    if (sizeL <= sizeR)
    return handleBoundaryCase(arrL, arrR, sizeL, sizeR);
    else
    return handleBoundaryCase(arrR, arrL, sizeR, sizeL);
    }

    int medL = sizeL / 2;
    int medR = sizeR / 2;

    if (medL <= medR)
    return medianTwoArray(arrL+medL, arrR, sizeL-medL, sizeR-medL);
    else
    return medianTwoArray(arrL, arrR+medR, sizeL-medR, sizeR-medR);
    }

    int handleBoundaryCase(int *arrSmall, int *arrLarge, int sizeSmall, int sizeLarge) {
    int medIdx = sizeLarge/2;

    // merge two small array into one
    int tempArr[7];
    int idxSmall = 0;
    int idxLarge = 0;
    int idxTemp = 0;
    int *newLargeArrStart = arrLarge + max(medIdx-2, 0);
    memcpy(tempArr+sizeSmall, newLargeArrStart, sizeof(int)*5);

    while (idxSmall < sizeSmall && idxLarge < min(5, sizeLarge)) {
    if (arrSmall[idxSmall] < newLargeArrStart[idxLarge])
    tempArr[idxTemp++] = arrSmall[idxSmall++];
    else
    tempArr[idxTemp++] = newLargeArrStart[idxLarge++];
    }
    if (idxSmall < sizeSmall)
    memcpy(tempArr+idxTemp, arrSmall+idxSmall, sizeof(int)*(sizeSmall-idxSmall));

    return tempArr[(sizeSmall+min(sizeLarge,5))/2];
    }

    VA:F [1.9.22_1171]
    0
    1. 1337c0d3r Post author

      This method might degrade to linear complexity. The statement “simply merge the two tiny arrays” is flawed, as the other array might not be tiny. (Imagine if you start with m = 1 and n = 1000000). A better approach to handle the base case would be to use binary search to merge the small array into the larger array, which the median is then readily obtained. I already have the bug fix and will update my post as soon as I find the time.

      VN:F [1.9.22_1171]
      0
  10. johny

    Hi, 1337:

    Could you provide code for finding k-th smallest element in an unsorted arrary? Googling can’t help me locate an answer with complete and correct code.

    Thanks!

    VA:F [1.9.22_1171]
    0
  11. buried.shopno

    Hi 1337,

    Great works you post on here.

    I code this problem here : http://ideone.com/FtqjM

    It seems quite simpler than your provided solution. I’ve tested it for different random datasets ( 1 <= N, M <= 1000). Would you mind to have a look, and let me know if you find any possible bug in it. Thanks.

    VA:F [1.9.22_1171]
    0
    1. 1337c0d3r Post author

      Try the following test case, which results in infinite recursion:
      n = 3
      A = {1 2 3}
      m = 2
      B = {1 2}

      I do see your code to have the potential to be more elegant. Looking forward to your bug-free code.

      VN:F [1.9.22_1171]
      0
    2. 1337c0d3r Post author

      Hey buried.shopno,
      I read your code again and had verified your solution to be correct!
      Sorry I missed the part where A’s size has to be less than B’s size (and you swap the array parameters to be passed in if not the case).
      Your code is definitely more elegant than mine, so this post will feature your solution (will be updated later) and I will give full credit to you πŸ™‚

      VN:F [1.9.22_1171]
      0
      1. buried.shopno

        Hi 1337,

        Thanks for your time to verify my program. I basically follow your approach, but code it in my way.

        I wanted to avoid 2 set of base cases (for n == 1, m == 1, n == 2, m == 2), and so swap the function parameters based on array size. I had hard time to handle the base case of n == 2 and m > 2.

        VA:F [1.9.22_1171]
        0
    3. Sean

      Bravo, good job buried.shopno! Your code simplified the base case handling a lot. 1337 did a good job analyzing the recursion pattern.

      Based on you two’s work, I made the following two further observations:
      1. if you assume m <= n, we can prove through mathematical deduction that the number of elements excluded from A will always be less or equal to the number of elements that could be removed from B. So the min function calls in the recursion step can be skipped. We always pick i or m-i-1 as the number of elements to be removed.
      2. Through mathematical deduction, we can also prove that A[i-1] or B[j-1] could be involved in the final calculation of median only when both m and n are even.

      I have verified both the above two observations by modify buried.shopno's code.

      VA:F [1.9.22_1171]
      0
      1. ιƒ­ε†°

        your observation 1 is great,
        I also agree with 2, when only one is even, the total is odd, the median should be 1 number and the disposed is always lesser or greater then (m+n+1)/2.
        Only when both is even the the number is (m+n)/2, which make the disposed be the rightmost of the left (m+n)/2,which is the two numbers needed by median.

        I deducted this by calculating 4 situations which either m is even or n is even.

        VN:F [1.9.22_1171]
        0
      2. ιƒ­ε†°

        code for your two observations.

        VN:F [1.9.22_1171]
        +2
  12. shilcare

    Hi, 1337:
    It seems that your bug-free code got an wrong answer with the following test case:

    A = {1, 3, 4, 5}
    B = {1, 3, 4, 6}

    expected: 4
    got: 3

    VA:F [1.9.22_1171]
    0
    1. 1337c0d3r Post author

      Thanks for your comment. (I think the expected answer should be 3.5, not 4)
      I’ve just tested your input on the code above, it returns the correct answer 3.5.
      Are you sure you are returning the answer as double?

      VN:F [1.9.22_1171]
      0
      1. shilcare

        Yes, the output is 3.5, I’m sorry.
        And I think I may have misunderstood the meaning of “median” in the problem. I thought it is the middle element of the result array after merging A and B. After all, it is more reasonable to return one element of the two array than a non-existing number, isn’t it? πŸ™‚

        VA:F [1.9.22_1171]
        0
  13. bpin

    let me try mine…

    VA:F [1.9.22_1171]
    0
    1. Eric-Draven

      what i dont get in your solution is why is that you are returning an element only from array m…when it possible for it to exist in any array m or n !!

      VA:F [1.9.22_1171]
      +2
    2. Eric-Draven

      what i dont get in your solution is why is that you are returning an element only from array m…when it possible for it to exist in any array m or n !!

      VA:F [1.9.22_1171]
      0
  14. Sophie

    Hello, first, thanks for your great posts and all of them are inspiring!

    About this problem, I think maybe we could still use the MIT solution with a small modification. When n+m is odd, then it’s fine; otherwise, it actually returns the greater one of the two middle numbers and the smaller one will be max(B[j], A[i-1]). My code is here. Looking forward for your comments.

    double findMedian(int A[], int B[], int l, int r, int nA, int nB) {
    if (l > r) return findMedian(B, A, max(0, (nA+nB)/2-nA), min(nB, (nA+nB)/2), nB, nA);
    int i = (l+r)/2;
    int j = (nA+nB)/2 – i – 1;
    if (j ≥ 0 && A[i] < B[j]) return findMedian(A, B, i+1, r, nA, nB);
    else if (j < nB-1 && A[i] > B[j+1]) return findMedian(A, B, l, i-1, nA, nB);
    else {
    if ( (nA+nB)%2 == 1 ) return A[i];
    else if (i > 0) return (A[i]+max(B[j], A[i-1]))/2.0;
    else return (A[i]+B[j])/2.0;
    }
    }

    VA:F [1.9.22_1171]
    +11
    1. LB

      @Sophie: would you please give the link to MIT solution that you referred to? It seems a lot simpler than original post’s idea that deal with many special cases. Thanks.

      VA:F [1.9.22_1171]
      0
    2. 1337c0d3r Post author

      Hi Sophie,
      Thanks for your comment. I will look into it later, and will add this problem to online judge so you all can verify your solution soon. πŸ™‚

      VN:F [1.9.22_1171]
      +1
      1. bureid.shopno

        Could you please upload the input/output files? I was getting TLE without any clue πŸ™

        Thanks.

        VA:F [1.9.22_1171]
        0
        1. 1337c0d3r Post author

          You can try submitting the solution without adding any code, and it will show you Wrong Answer. Then you could see the test cases which allows you to check your program. Let me know if you believe your program was correct but still getting TLE!

          VN:F [1.9.22_1171]
          0
          1. bureid.shopno

            Thanks for a good data set. After a small fix, I got it accepted. My code was getting TLE for a special case n == 0 or m == 0.

            VA:F [1.9.22_1171]
            0
        1. LB

          Hey Sophie, would you mind to share you complete code here (or, on ideone.com). I ran your above code, which was getting too many wrong answers. I’m confused, even though it seems you follow the same procedure as mentioned in MIT’s note.
          Thanks in advance.

          VA:F [1.9.22_1171]
          0
          1. 1337c0d3r Post author

            Here’s Sophie’s amazing solution. (Sophie I hope you won’t mind me posting your solution here). I wanna update this post with her solution but haven’t got the time to do it yet. Feel free to add comment on the solution.

            double findMedian(int A[], int B[], int l, int r, int nA, int nB) {
            if (l>r) return findMedian(B, A, max(0, (nA+nB)/2-nA), min(nB,
            (nA+nB)/2), nB, nA);
            int i = (l+r)/2;
            int j = (nA+nB)/2 – i – 1;
            if (j>=0 && A[i] < B[j]) return findMedian(A, B, i+1, r, nA, nB);
            else if (j<nB-1 && A[i] > B[j+1]) return findMedian(A, B, l, i-1, nA, nB);
            else {
            if ( (nA+nB)%2 == 1 ) return A[i];
            else if (i>0) return (A[i]+max(B[j], A[i-1]))/2.0;
            else return (A[i]+B[j])/2.0;
            }
            }

            double findMedianSortedArrays(int A[], int n, int B[], int m) {
            if (n<m) return findMedian(A, B, 0, n-1, n, m);
            else return findMedian(B, A, 0, m-1, m, n);
            }

            VN:F [1.9.22_1171]
            +6
          2. Sophie

            Sorry for the belated reply. I was out of town for an interview. 1337c0d3r has posted my complete code. The only tricky part is that my function asks for two more parameters, l and r, and thus we need a helper function and set l and r as 0 and n-1 (m-1) as needed. Please let me know if it still doesn’t work for you.
            Thanks 1337c0d3r for posting my code!!

            VA:F [1.9.22_1171]
            +1
        2. Atul

          Hi Sophie/Admin, I implemented Sophie’s idea. I had to put separate checks for the cases where one of the arrays is empty and the other has even length.

          Could you please explain why is it working in Sophie’s case?

          Example case
          [5, 7] and []

          Link to my code – http://ideone.com/vc4kPc

          VA:F [1.9.22_1171]
          0
        1. 1337c0d3r Post author

          Congrats Sophie!!!
          Your solution is beautiful and concise. I will update this post by featuring your solution, giving full credits to you. Great job!

          VN:F [1.9.22_1171]
          +1
          1. lipingwu

            1337, I had the same idea with Sophie, but I implemented the idea without recursion. I put the codes into your online test (may need to delete the comments before copy them into the test) and it was accepted!

            Following is my code, and can you have a look at and give some comments? Also, can I get some credits too? πŸ™‚

            //Note: The element right before the target element after combining and sorting these two arrays is not the element right before the target in the current array.
            double findMedianSortedArrays(int A1[], int n1, int A2[], int n2){//Assume both A1 and A2 are not empty
            //or
            if(n1 == 0 && n2 == 0) throw “No element in neither array!”;

            int s1 = 0, e1 = n1-1, s2 = 0, e2 = n2-1;//[s1, e1] is the searching range for A1, and [s2, e2] is the searching range for A2. In each iteration of the loop below, the target element should be in either range if it is in.
            int targetNum = (n1+n2)/2;//We are going to find the element in either array that is greater than or equal to targetNum((n1+n2)/2) elements in both arraies.
            while(s1 <= e1 && s2 = A2[mid2]){
            if(mid1+mid2 < targetNum) s2 = mid2 + 1;
            else e1 = mid1 – 1;
            }else{
            if(mid1+mid2 e1){//The searching range for A1 is empty now. Assume the target valude is T. Then T >= A1[s1-1]=A1[e1] and T A2[t-1]) ? A1[e1] : A2[t-1];//
            }else{
            t = targetNum – s2;
            T1 = A1[t];
            T2 = (t==0 || A2[e2]> A1[t-1]) ? A2[e2] : A1[t-1];
            }
            return (n1+n2)%2 ? T1 : ((double) T1+T2)/2;
            }

            VA:F [1.9.22_1171]
            0
        2. lipingwu

          Sophie, I had the same idea with yours. Can you have a look at the solution I posted and give some comments? Thanks.

          VA:F [1.9.22_1171]
          0
        3. Amol

          @Sophie
          That’s for an awesome implementation of the algorithm and handles very well arrays of different sizes.

          Small modifications to make this look simple and will improve performance by removing else statements.

          double findMedian(int A[], int B[], int l, int r, int nA, int nB) {

          if (l>r) return findMedian(B, A, max(0, (nA+nB)/2-nA), min(nB,(nA+nB)/2), nB, nA);

          int i = (l+r)/2;
          int j = (nA+nB)/2 – i – 1;

          if (j>=0 && A[i] < B[j]) return findMedian(A, B, i+1, r, nA, nB);

          if (j B[j+1]) return findMedian(A, B, l, i-1, nA, nB);

          if ( (nA+nB)%2 == 1 ) return A[i];

          if (i>0) return (A[i]+max(B[j], A[i-1]))/2.0;

          return (A[i]+B[j])/2.0;

          }

          double findMedianSortedArrays(int A[], int n, int B[], int m) {
          if (n<m) return findMedian(A, B, 0, n-1, n, m);

          return findMedian(B, A, 0, m-1, m, n);
          }

          VA:F [1.9.22_1171]
          0
          1. guoqiang2

            this is weird, I download your code, and change to a simple case:

            and the answer of your code or Sophie’s method is:
            6
            which should be 5.
            Am I doing anything wrong here?!

            VN:F [1.9.22_1171]
            0
    3. Wenqiang

      @Sophie
      Thanks for your elegant codes. It is simple and efficient. While debugging it, I found a minor bug within it. When input is like A={}, B={2, 3}, there might be array bound overflow. That is B[-1] will be evaluated. In visual studio, it seems that no exception will be thrown.

      VN:F [1.9.22_1171]
      +2
    4. yxsh01

      j maybe less than 0. so you need discuss this situation.

      VA:F [1.9.22_1171]
      0
      1. yxsh01

        j maybe less than 0. so you need discuss this situation
        double findM(int A[],int B[],int An,int Bn,int l,int r)
        {
        if(l > r)
        {
        return findM(B,A,Bn,An,max(0,(An+Bn)/2-An),min(Bn-1,(An+Bn)/2));
        }
        int i = (l+r)/2;
        int j = (An+Bn)/2-i-1;

        if(j>= 0 && A[i] < B[j])
        {
        return findM(A,B,An,Bn,i+1,r);
        }
        else if(j B[j+1])
        {
        return findM(A,B,An,Bn,l,i-1);
        }
        else
        {
        if((An+Bn) % 2 == 0)
        {
        if(j0)
        return (A[i] + max(A[i-1],B[j]))/2.0;
        else
        return (A[i] + B[j])/2.0;
        }
        else
        {
        return A[i];
        }
        }
        }

        VA:F [1.9.22_1171]
        0
    5. cafang

      seems can’t pass current online judge now. Changed a little bit, and passed judge.

      VN:F [1.9.22_1171]
      0
      1. cafang

        seems code tag has issue.

        public class Solution {

        public double findMedianSortedArrays(int A[], int B[]) {
        // Start typing your Java solution below
        // DO NOT write main() function
        int alength = A.length;
        int blength = B.length;

        if (alength == 0 ) {
        if (blength % 2 == 1) {
        return B[blength/2];
        }
        else {
        return ( B[blength/2 – 1] + B[blength/2] ) / 2.0;
        }
        }
        else if (blength == 0 ) {
        if (alength % 2 == 1) {
        return A[alength/2];
        }
        else {
        return ( A[alength/2 – 1] + A[alength/2] ) / 2.0;
        }
        }

        int left = 0;
        int right = alength-1;

        return findMedian(A, B, left, right, alength, blength);

        }

        public double findMedian(int A[], int B[], int l, int r, int nA, int nB) {
        if (l>r) {
        int left = 0;
        int right = nB-1;
        return findMedian(B, A, left, right, nB, nA);
        }

        int i = (l+r)/2;
        int j = (nA+nB)/2-i-1;

        boolean lvalid = false;
        if (j <= nB – 1 ) {
        lvalid = (j = B[j]);
        }
        else {
        lvalid = (j =0 ) {
        rvalid = (j >= nB – 1) || (A[i] = nB – 1);
        }

        if ( lvalid && !rvalid ) return findMedian(A, B, l, i-1, nA, nB);
        else if (!lvalid && rvalid) return findMedian(A, B, i+1, r, nA, nB);
        else {
        if ( (nA+nB)%2 == 1 ) return A[i];
        else if (i>0) {
        if (j<0) {
        return (A[i]+A[i-1])/2.0;
        }
        else {
        return (A[i]+Math.max(B[j], A[i-1]))/2.0;
        }

        }
        else return (A[i]+B[j])/2.0;
        }
        }

        }

        VN:F [1.9.22_1171]
        -1
    6. Guohua Wu

      There is a small bug in the code, when
      int A[] = {1, 2}
      int B[] = {}

      this case will make the j equal to -1, Sophie’s solution doesn’t check this.

      VA:F [1.9.22_1171]
      0
  15. fzzh24

    There is no need to apply the finding k-th smallest algorithm twice to find the two middle numbers